Problem Set (Part-I) **Total Marks: 65 Data:** Avogadro Number: 6.023×10^{23} mole⁻¹, Charge of electron (e): 1.6×10^{-19} Coulomb Boltzmann's Constant (k_B): 1.38x10⁻²³ J.K⁻¹, Gas Constant (R): 8.314 J.mol⁻¹K⁻¹ mass of free electron (m_o) = 9.11x10⁻³¹ kg, Planck's constant (h): 6.6x10⁻³⁴ J.s⁻¹ **Question 1** [10]Consider a cubic lattice in which atomic positions of metal ion is $(0\ 0\ 0)$ and oxygen ions is $(\frac{1}{2}00)$, $(0\frac{1}{2}0)$ and $(00\frac{1}{2})$. a) Draw the plan view of the lattice in the x-y plane with appropriate labels. 2 b) Determine the co-ordination number of metal and oxygen ions? 1 c) What is the formula unit and how many formula units are contained in an unit cell. 2 d) What is the lattice type? 1 e) Can this unit cell be represented in any other way? Justify your answer. 4 **Ouestion 2** [4] Estimate the size of an interstitial atom (r) that can be placed in a tetrahedral void of a HCP unit cell touching all the surrounding host atoms of radii R without displacing them. **Question 3** [8] Write the defect reactions for following cases: a) Dissolution of MgO in an otherwise stoichiometric Al₂O₃ under ambient conditions. 4 b) Dissolution of Cr₂O₃ in an otherwise stoichiometric NiO under ambient conditions. 4 **Question 4** Write the Schottky defect reaction for TiO₂ and then calculate the equilibrium oxygen vacancy concentration (per unit volume) in TiO₂ at 1400°C given that enthalpy of defect formation is 5.2 eV. You can neglect the entropy of defect formation. Atomic weights of Ti and O are 48 and 16 respectively, density of TiO₂ is 4 g/cc. **Question 5** [14] TiO₂ has a band gap of 3 eV. Atomic weights of Ti and O are 48 and 16 respectively; density of TiO₂ is 4 g/cc. It is highly nonstoichiometric (oxygen deficient), compensated by creation of the Ti interstitials. The equilibrium constant for the defect reaction is $K = 6.55 \times 10^{122} \exp\left(-\frac{960 \text{kJ/mole}}{\text{RT}}\right) \text{MPa.cm}^{-15}$ a) Write the appropriate defect reaction for defect creation and the rate constant of the reaction in terms of pO₂ and the defects concentrations. b) Calculate the extent of non-stoichiometry (in mole fraction of Ti interstitials) at 1690 K in air and at pO₂ = 10^{-9} MPa. c) Calculate electronic conductivity under both conditions if electron mobility is 0.2 cm²/V-s. d) Calculate the electronic conductivity at 1690K if TiO₂ was stoichiometric and compare the results with those obtained in (c)? **Question 6** [13]

NiO has rocksalt structure with bandgap of ~4.2 eV and Schottky defect formation energy of ~6 eV. It is a cation deficient oxide. Assume the defects to be completely ionized. The diffusivity of defects in NiO at 1000°C is 1.6x10⁻⁹ cm²/sec and electron and hole mobilities are 24 cm²/V-s. Density of NiO is 6.67 g/cc and molecular wt is 75 g/mole.

- a) At 1000°C, what kind of conductivity will be in pure and stoichiometric NiO? 4 b) In the nonstoichiometric state, how will this deficiency be accommodated? Justify your answer by writing appropriate defect reaction and equilibrium constant. 4
- c) Will the conductivity be of Ni_{1-x}O be of p- or n-type? Explain. Show the dependence on pO₂?

Ouestion 7

A sample of potassium ferrite with chemical formula K⁺_{1.25}Fe²⁺_{0.25}Fe³⁺_{10.75}O²⁻₁₇ is a mixed ionic/electronic conductor with the β -Alumina structure. It contains 4.07×10^{27} potassium ions per m³ located in (001) planes. For this material, the total electrical conductivity at 573 K is 1.53×10^{-2} S/m and the diffusion coefficient at 573 K for K⁺ ions is 1.89×10^{-2} ¹⁴ m²/s. Calculate the transport number for K⁺ ions at 573K. If the energy of migration of K⁺ ions is 23 kJ/mol, what will be the ionic conductivity of the sample at 298 K?

5