Data: Avogadro Number: $6.023 \times 10^{23} \mathrm{~mole}^{-1}$, Charge of electron (e) : 1.6×10^{-19} Coulomb Boltzmann's Constant $\left(k_{B}\right): 1.38 \times 10^{-23} \mathrm{~J}^{-1} \mathrm{~K}^{-1} \quad$ Gas Constant $(R): 8.314 \mathrm{~J} . \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ mass of free electron $\left(m_{o}\right)=9.11 \times 10^{-31} \mathrm{~kg}$, Planck's constant $(h): 6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s}^{-1}$

Question 1

Consider a cubic lattice in which atomic positions of metal ion is (000) and oxygen ions is $(1 / 200),(01 / 20)$ and $\left(00^{1 / 2}\right)$.
a) Draw the plan view of the lattice in the $x-y$ plane with appropriate labels.
b) Determine the co-ordination number of metal and oxygen ions?
c) What is the formula unit and how many formula units are contained in an unit cell.
d) What is the lattice type?
e) Can this unit cell be represented in any other way? Justify your answer.

Question 2

Estimate the size of an interstitial atom (r) that can be placed in a tetrahedral void of a HCP unit cell touching all the surrounding host atoms of radii R without displacing them.

Question 3

Write the defect reactions for following cases:
a) Dissolution of MgO in an otherwise stoichiometric $\mathrm{Al}_{2} \mathrm{O}_{3}$ under ambient conditions.
b) Dissolution of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ in an otherwise stoichiometric NiO under ambient conditions.

Question 4

Write the Schottky defect reaction for TiO_{2} and then calculate the equilibrium oxygen vacancy concentration (per unit volume) in TiO_{2} at $1400^{\circ} \mathrm{C}$ given that enthalpy of defect formation is 5.2 eV . You can neglect the entropy of defect formation. Atomic weights of Ti and O are 48 and 16 respectively, density of TiO_{2} is $4 \mathrm{~g} / \mathrm{cc}$.

Question 5

TiO_{2} has a band gap of 3 eV . Atomic weights of Ti and O are 48 and 16 respectively; density of TiO_{2} is $4 \mathrm{~g} / \mathrm{cc}$. It is highly nonstoichiometric (oxygen deficient), compensated by creation of the Ti interstitials. The equilibrium constant for the defect reaction is

$$
\mathrm{K}=6.55 \times 10^{122} \exp \left(-\frac{960 \mathrm{~kJ} / \mathrm{mole}}{\mathrm{RT}}\right) \mathrm{MPa} . \mathrm{cm}^{-15}
$$

a) Write the appropriate defect reaction for defect creation and the rate constant of the reaction in terms of pO_{2} and the defects concentrations.

3
b) Calculate the extent of non-stoichiometry (in mole fraction of Ti interstitials) at 1690 K in air and at $\mathrm{pO}_{2}=10^{-9}$ MPa .
c) Calculate electronic conductivity under both conditions if electron mobility is $0.2 \mathrm{~cm}^{2} / \mathrm{V}$-s. 4
d) Calculate the electronic conductivity at 1690 K if TiO_{2} was stoichiometric and compare the results with those obtained in (c)?

Question 6

NiO has rocksalt structure with bandgap of $\sim 4.2 \mathrm{eV}$ and Schottky defect formation energy of $\sim 6 \mathrm{eV}$. It is a cation deficient oxide. Assume the defects to be completely ionized. The diffusivity of defects in NiO at $1000^{\circ} \mathrm{C}$ is 1.6×10^{-9} $\mathrm{cm}^{2} / \mathrm{sec}$ and electron and hole mobilities are $24 \mathrm{~cm}^{2} / \mathrm{V}$-s. Density of NiO is $6.67 \mathrm{~g} / \mathrm{cc}$ and molecular wt is $75 \mathrm{~g} / \mathrm{mole}$.
a) At $1000^{\circ} \mathrm{C}$, what kind of conductivity will be in pure and stoichiometric NiO ?
b) In the nonstoichiometric state, how will this deficiency be accommodated? Justify your answer by writing appropriate defect reaction and equilibrium constant.
c) Will the conductivity be of $\mathrm{Ni}_{1-\mathrm{x}} \mathrm{O}$ be of p - or n-type? Explain. Show the dependence on pO_{2} ?

Question 7

A sample of potassium ferrite with chemical formula $\mathrm{K}^{+}{ }_{1.25} \mathrm{Fe}^{2+}{ }_{0.25} \mathrm{Fe}^{3+}{ }_{10.75} \mathrm{O}^{2-}{ }_{17}$ is a mixed ionic/electronic conductor with the β-Alumina structure. It contains 4.07×10^{27} potassium ions per m^{3} located in (001) planes. For this material, the total electrical conductivity at 573 K is $1.53 \times 10^{-2} \mathrm{~S} / \mathrm{m}$ and the diffusion coefficient at 573 K for K^{+}ions is $1.89 \times 10^{-}$ ${ }^{14} \mathrm{~m}^{2} / \mathrm{s}$. Calculate the transport number for K^{+}ions at 573 K . If the energy of migration of K^{+}ions is $23 \mathrm{~kJ} / \mathrm{mol}$, what will be the ionic conductivity of the sample at 298 K ?

